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Abstract. The electrical behavior of anisotropic BSCCO single crystals is modeled by mutually coupled
long Josephson junctions. We show that although the fluxons in the different layers do not a priori prefer the
in-phase motion desired for many potential applications it is possible to induce such behavior by coupling
the system to a high-Q resonator with a resonance frequency corresponding to fluxon in-phase motion. The
resulting model is a set of coupled non-linear partial differential equations. By direct numerical simulations
we have demonstrated that the qualitative behavior of the combined stacked long Josephson junctions and
cavity system can be understood on the basis of the general concepts of nonlinear oscillators interacting
with a resonator. For some region of the parameter space it is possible to reach the desired synchronous
state, making the system potentially suitable for applications. We also look at the different dynamical
states defined by different fluxon dynamical states in combination with different cavity properties.

PACS. 74.50.+r Tunneling phenomena; point contacts, weak links, Josephson effects – 05.45.Xt
Synchronization; coupled oscillators – 85.25.Cp Josephson devices

1 Introduction

Fluxon motion in intrinsic Josephson junctions of the
highly anisotropic BSCCO type [1] offers a potentially in-
teresting system for microwave applications in the hun-
dreds of gigahertz – or even terahertz range. The basic
physical mechanism to be exploited is the emission of elec-
tromagnetic radiation by a Josephson fluxon when it hits
an edge of the junction. If it were possible to achieve an
ordered motion of the Josephson fluxons in the various
layers, the fluxons would hit the sides of the junctions
simultaneously and emit electromagnetic radiation coher-
ently. The difficulty arises from the fact that same polar-
ity fluxons basically repel each other and therefore this
simple argument would rather favor anti-phase motion.
Strong dynamic effects of the extremely nonlinear sys-
tem, however, may have the opposite effect and induce the
desired synchronous fluxon motion with a corresponding
characteristic velocity/frequency. If we embed the BSCCO
system in a cavity with a resonance frequency correspond-
ing to the in-phase fluxon frequency we may impose fre-
quency locking and forced motion on the fluxon system.
This is a generic behavior and a well known effect for
other non-linear oscillator – cavity systems; it has partic-
ularly been observed for small [2] and long [3–5] Josephson
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junctions. To theoretically treat this problem several ap-
proaches related to Josephson physics have been proposed:
series array of small Josephson junctions have been ana-
lyzed through the Liapunov exponents to characterize the
tendency to phase-lock [6]; two-dimensional arrays or par-
allel and series long Josephson junctions have been treated
with a model similar to the generic Kuramoto model for
nonlinear interacting oscillators [7–9]. In spite of the wide
use of the idea the application to stacks requires some
special care. In fact in series arrays the basic nonlinear
elements (small or long Josephson junctions) are indepen-
dent and coupled only via the resonator. The role of the
cavity is to favor the in phase mode to prevent the junc-
tions to wander around with arbitrary phase-shift. In such
cases in the ideal situation of identical junctions the syn-
chronous motion could be obtained if the coupling mech-
anism is able to provide any attraction – even arbitrarily
small. For such reason the investigations of the previous
systems focused on non-identical junctions – i.e. on oscilla-
tors whose natural frequency are different, to estimate the
capability of the locking mechanism to overcome the dif-
ferences due to fabrication imperfections in the junctions
parameters [7,10,11]. For intrinsic junctions the crucial
point, as already mentioned, is that even perfectly identi-
cal junctions would not oscillate in-phase. For such reason
in this work we focus on identical junctions coupled to a
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cavity. A preliminary study of the same system has been
already presented elsewhere [12]; here we will present the
mathematical model in Section 2, while in Section 3 we
demonstrate numerical examples on the model for differ-
ent situations with respect to the junction dynamical state
and the cavity resonance frequency. As guidance to exper-
imentalists searching for the practical applications we also
calculate the emitted power and relate it to the junction
dynamical states from which the radiation derives. Some
conclusions are outlined in the last section.

2 The model

The standard model for inductively coupled stacks is a
set of Partial Differential Equations (PDE) coupled via
the magnetic flux [13]:

SJ =
∂2φ

∂x2
; S ≡
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Ji ≡ ∂2φi

∂t2
+ α

∂φi

∂t
+ sin (φi) − γ. (1)

Here α = (1/Rj)(�/2eI0Cj)1/2 is the dissipation pa-
rameter (Rj , I0, and Cj are the normal resistance, the
critical current and the capacitance per unit length, re-
spectively), γ is the current normalized to the critical
current I0 of the individual junctions, is the normalized
coupling term among the junctions in the stack reads
S = −λL/d′ sinh(t/λL), d′ = d + 2λL coth(τ/λL) [13].
Time is normalized to the inverse of the Josephson fre-
quency ωj = (2eI0/�Cj)1/2 and space with respect to
the Josephson length λj = (�/2eµ0I0)1/2. The resonator
at one edge of the junctions (see Fig. 1) changes the
boundary conditions: instead of the open circuit condi-
tions (or zero spatial derivatives) one should introduce a
term proportional to the current fed by the resonator that
causes a magnetic field which changes the boundary con-
ditions [14]. The new boundary condition is:

∂φi

∂x
= γi. (2)

Here γi = Ii/I0 is the normalized current at the right hand
side of the LJJ (see Fig. 1). Such current is connected to
the normalized (respect to I0/ωj) charge q in the capacitor
of the RLC circuit via the equation:

γi = − 1
N

(
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Ω2

d2q

dt2
+
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)
+

c

N

∂2φi(L)
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Here Ω is the resonance frequency of the RLC cir-
cuit normalized to the Josephson frequency ωj, Ω =√

(1/(NC0L))/ωj, Q its quality factor, a = Ω/2Q is the
dissipation in the cavity, c is the total capacitance nor-
malized to the Josephson capacitance, c = NC0/Cj . The

 

 

 

Fig. 1. Schematic drawing of the model.

charge in the resonator is given by the standard linear
equation for the charge of a RLC circuit:

d2q

dt2
+ 2a

dq

dt
+ Ω2q = Ω2 c

N

N∑
i=1

∂φi(L)
∂t

. (4)

Equations (1–4) have been integrated with a standard
fourth (sometimes fifth) order Runge-Kutta routine for
the time dependence. The spatial derivative has been ap-
proximated by the two-points discrete finite difference for
the first derivative and the three-points finite difference
for the second derivative.

The basic idea is that the fundamental oscillators (the
fluxons moving back and forth in the individual junction
layers) emit pulsed radiation at a frequency close to the
resonance frequency of the cavity. At each collision some
small amount of power – depending on the coupling co-
efficient – is transferred to the cavity. The current wave-
form in the (linear) cavity is essentially sinusoidal, and the
amplitude builds up over many oscillation periods until
a power balance is obtained, such that the power trans-
ferred to the cavity in each period is equivalent to the
power transferred from the cavity to the junctions in the
same period. When the frequency of the oscillators is close
enough to the resonance of the cavity, the cavity oscilla-
tions become large enough to furnish the clock that forces
the junction oscillators to phase-lock to the cavity reso-
nance frequency. If the junction parameters are such that
intrinsically the in-phase motion is favored at a frequency
close to the cavity resonance frequency, the cavity – junc-
tion interaction will stabilize the fluxon in-phase motion
and contribute even further to the build up of power in
the cavity. In some cases with slightly different individual
oscillation frequencies the above process becomes a cas-
cade process with an abrupt transition from the unlocked
to the locked state with a sudden increase in the degree
of coherence [2,7].
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We note as a general feature of our system that it is
an unusual variant of the classical problem of a nonlinear
oscillator coupled to a linear resonator. Here all the indi-
vidual oscillators are each coupled to the cavity. In addi-
tion the individual oscillators are coupled to each other by
inductive coupling, defining a number of different intrinsic
oscillation modes. The competition between the two dif-
ferent types of coupling of the junctions will be essential
for the outcome of the dynamics, and the possibilities for
utilizing the combined system for applications.

3 Numerical results

To introduce the topic, Figure 2 shows some results for
a Josephson stack without any coupling to a cavity. We
have chosen the smallest reasonable stack, n = 3, and
kept the length short, in order to find the essentials of the
problem without needing too excessive calculations. In the
following we will need the characteristic velocities for elec-
tromagnetic waves in the stack considered as a linear res-
onator. For an N-stack there are N characteristic velocities
for the N different modes of propagation for linear modes.
These velocities depend on the coupling parameter S, and
the simple formula for calculating these velocities may be
found for example in reference [13]. Here we will consider
only the in-phase velocity C+ and the anti-phase veloc-
ity C−:

C+,− = C0 1√
1 ± S

C0 =
√

µ0d′Cj . (5)

Figure 2 shows the average voltage per junction, as well as
the phase difference between the top/bottom and center
junction. The main observations of Figure 2 are: For bias
current increasing from below we notice that the voltage
gets locked at the resonant step at V = (2π/L)C− ∼
1.20, while the phase angle between the top/bottom and
center fluxon decreases from about π to about 1 at a bias
of γ = 0.32, where the center junction expels the fluxon
and switches to a finite voltage. Thus below γ = 0.32
we have the anti-phase mode with a velocity close to the
characteristic velocity C−. At larger bias currents the in-
phase mode becomes stable. We notice that the voltage for
γ between about 0.35 and 0.6 is defined by the in-phase
velocity C+ through V = (π/L)C+ ∼ 1.34 while in the
same bias range the phase angle is zero, i.e. the fluxons
in the three layers move coherently. At a bias around γ =
0.6 the in-phase motion becomes unstable and the middle
fluxon is expelled; top and bottom junctions are still on
the fluxon resonant mode while the middle junctionis now
biased at a finite voltage defined by the McCumber curve.
By decreasing the bias from γ = 0.9 to low bias (γ ≈ 0.3)
the two-fluxon solution is preserved to such a low bias.

While Figure 2 shows the case of no coupling of the
junctions in the stack to a cavity, the case of no coupling
between junctions but coupling to a common cavity has
been considered previously [2–4]. For this case the junc-
tion oscillators are still nonlinear and frequency locking to
a cavity may be observed as discussed in references [2–4].

Fig. 2. Numerical example for a 3 junction stack without a
cavity. Parameters of the simulations are: n = 3, L = 5, α =
0.05, S = 0.1, Q = 100, c = 0. The two horizontal lines denotes
the voltages corresponding to in-phase and anti-phase resonant
steps, and the voltage is the average voltage per junction. The
phase-difference of the solitons in the top and middle junction
is also shown.

Fig. 3. Numerical example for a 3 junction stack with a cavity
with resonant-frequency corresponding to the in-phase step.
Parameters of the simulations are: n = 3, L = 5, α = 0.05,
ε = 0.1, Q = 100. c = 0.001, Ω = 0.67. The two horizontal
lines denotes the voltages corresponding to in-phase and anti-
phase resonant steps, and the voltage is the average voltage
per junction. Not shown is the phase-difference, because it is
similar to the one plotted in Figure 2.

A cavity induced step may be observed in the IV curve,
indicating frequency pulling of the junctions towards the
cavity resonance frequency. Such a system may be ob-
tained experimentally by fabricating several low Tc long
Josephson junctions on the same substrate and putting
them in a cavity.

In Figure 3 we have the combined effects of junction
– junction coupling as well as junction – cavity coupling.
Indeed Figure 3 shows some of the main results of this
work. Like in Figure 2 we have chosen the smallest reason-
able stack, n = 3, and kept the length short. This should
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Fig. 4. Numerical examples for a 3 stack with a cavity. Parameters of the simulations are: n = 3, L = 5, α = 0.05, S = 0.1,
Q = 100, c = 0.0001, Ω = 0.67. a) γ = 0.34, b) γ = 0.35, c) γ = 0.56, and d) γ = 0.85. The solid line denotes the current in the
cavity (left axis) while the thick and thin dotted lines denote the middle and top/bottom junctions, respectively (right axis).

enable us to observe the essential phenomena while keep-
ing the numerical work at a minimum. The figure shows
the phase difference between the top/bottom fluxon and
the center fluxon as a function of the bias current. We also
show the average junction voltage (this is an experimen-
tally observable quantity and a valuable tool to character-
ize the dynamical state. Finally we also show the (normal-
ized) power, P/I2

0Lωj, in the cavity, calculated according
to the formula equation (6):

log10
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LI0ω2
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)
= log10
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
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Here P is the average power dissipated in the resonator
numerically retrieved through the current obtained from
equation (4).

The three stack is loaded with a cavity in resonance
with the in-phase mode defined in Figure 2, and we note
that for a bias range between γ = 0.34 and γ = 0.58
the phase difference is zero and the voltage consistent in-
phase motion through V = (2π/L)C+ = 1.34. Strictly
speaking the in-phase voltage calculated this way may be
slightly overestimated since small delays occur at the colli-
sions with the boundaries. We find that this is a negligible

effect here. Also we have chosen a rather small coupling
coefficient of S = 0.1 while a typical value for BSCCO
type material is larger, for example almost 0.5. We have
calculated that case also, and find that the qualitative
behavior we describe here is generic. We also note that
the behavior in Figure 3 is not the only state: depending
on the initial conditions other configurations are possible.
However, if we compare to Figure 2, it seems clear that
the cavity has increased the stability of the in-phase mode
slightly for low bias. We notice that the power in the cav-
ity decreases dramatically below γ = 0.34 and there is
another transition to a slightly lower power at γ = 0.58.
The origin of this may be understood from considering the
more detailed time pictures shown in Figures 4a–d.

Figures 4a–d show the time behavior for selected bias
points in Figure 3. In Figure 4a, the unperturbed mo-
tion of the fluxons in absenceof the resonator (which has
resonance frequency Ω = 0.67 corresponding to in-phase
motion, compare to Fig. 2), for the lowest bias γ = 0.34
we would have had anti-phase fluxon motion. We note in
Figure 4a that the center junction has expelled the fluxon
and switched to the McCumber curve. The top and bot-
tom junctions have each one fluxon, each fluxon in phase
with the other. In fact while the top/bottom junctions
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Fig. 5. Numerical example for a 3 junction stack with a cavity
with resonant-frequency corresponding to the anti-phase step.
Parameters of the simulations are: n = 3, L = 5, α = 0.05,
S = 0.1, Q = 100. c = 0.0001, Ω = 0.6. The two horizontal
lines denotes the voltages corresponding to in-phase and anti-
phase resonant steps, and the voltage is the average voltage
per junction. Not shown is the phase-difference, because it is
similar to the one plotted in Figure 2.

voltages oscillate around the zero voltage value with a sud-
den peak corresponding to the fluxon passage, the middle
junction shows a steady non-zero voltage corresponding
to the uniform rotation of the phase. These fluxons in-
duce a pulse (trace) with the opposite polarity on top of
the finite voltage in the center junction. Thus when cou-
pling to the cavity, the center junction pulse will subtract
from the top/bottom fluxons and reduce the power in the
cavity. This can be directly seen from the low value of
the cavity current and from the decreased cavity power
in Figure 3. In Figure 4b with a slightly increased bias,
γ = 0.35 fluxons exist in all three junctions in an in-phase
configuration moving with a velocity corresponding to C+.
This coherent motion is in resonance with the cavity, and
gives rise to a cavity current 50 times larger than in Fig-
ure 4a. We note that the minimum of the cavity current
is delayed about 45 degrees with respect to the arrival of
the fluxons. At the upper range of stability of this mode,
γ = 0.56 shown in Figure 4c, this phase angle is −45 de-
grees, while for γ = 0.41 (not shown) this phase angle
is approximately zero. We also note in Figures 4b, c the
small anti-phase oscillations which keep the fluxons locked
in the in-phase mode. These oscillations are well known for
stacked Josephson junctions [15–18]. In Figure 4d corre-
sponding to γ = 0.85, a transition to still another mode
has taken place. In this case, as in Figure 4a, the center
junction has expelled its fluxon and switched to a finite
voltage corresponding to the McCumber curve, as can be
seen both from Figure 4d and Figure 3. In contrast to
Figure 4a, the trace in the center junction is now in phase
with the fluxons in the top/bottom junctions, and all three
junctions contribute constructively to the cavity current
which has almost the same value as for the in-phase fluxon
mode in Figure 4c. Figure 3 also shows that the power in
the cavity has only changed marginally. Our conclusion

Fig. 6. Time pictures for a 3 stack with a cavity. Parameters of
the simulations are: n = 3, L = 5, α = 0.05, S = 0.1, Q = 100.
c = 0.0001, γ = 0.15, Ω = 0.60 (a) and Ω = 1.2 (b). The
solid line denotes the current in the cavity (left axis) while the
thick and thin dotted lines denote the middle and top/bottom
junctions, respectively (right axis).

is that the microwave power generated does not change
significantly if some junctions in the stack switch to the
McCumber curve, as long as the trace has the same po-
larity as the fluxons. For a system without a cavity this
was also pointed out in reference [19].

Figure 5 shows the case of the 3 – stack loaded with a
cavity with a resonance frequency Ω = 0.60 corresponding
to the anti-phase motion. Several features in Figure 5 are
similar to the decoupled system in Figure 2. For low values
of the bias – γ smaller than about 0.30 – anti-phase motion
with a decreasing phase difference is observed together
with another mode in which all junctions have switched
to the McCumber curve. The main difference is that, as
it is evident from the slope of the I-V curve, in Figure 1
only one junction has switched to the McCumber. The
power in the cavity is increasing with γ although it is
several orders of magnitude smaller than for the in-phase
situation in Figures 3, 4.

A time picture for low bias γ = 0.15 is shown
in Figure 6a. We note that same polarity fluxons ex-
ist in all three junctions, however the center fluxon is
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Fig. 7. Numerical example of a time picture for a 7 stack with
an in-phase cavity. Parameters of the simulations are: n = 7,
L = 10, α = 0.05, S = 0.1 Q = 100, c = 0.00233, Ω = 0.3479,
γ = 0.57. The solid line denotes the current in the cavity (left
axis) while the dotted lines denote the junction voltages (right
axis).

approximately 180 degrees out of phase with the
top/bottom fluxons as it should be for the anti-phase
mode. All three fluxons leave traces with opposite po-
larity in neighboring junctions thus reducing the current
coupled into the cavity. We also note that because of the
anti-phase motion the fundamental frequency exiting the
cavity is at twice the cavity resonance frequency. Hence
the current and power in the cavity is small as can be
seen from Figure 6a. When the stability range of the mode
in Figure 6a is exceeded at γ = 0.15 the center junc-
tion switches while the top/bottom fluxons continue to
move in-phase. They leave a trace in the center junction
which has opposite polarity of the fluxons. The time pic-
ture looks much like in Figure 4a, and the power is small
as can be seen from Figure 6a. Taking the consequences
of the discussion in connection with Figure 6a we tried
to load the junction with a cavity having a resonance fre-
quency at twice the frequency corresponding to anti-phase
motion, i.e. Ω = 1.20, while leaving all other parameters
unchanged. The result is shown in Figure 6b. Now we see
essentially the same fluxon behavior as in Figure 6a; how-
ever the cavity current, now at the double frequency, be-
comes 3−4 times larger and hence the power in the cavity
increases more than an order of magnitude. As the bias is
increased towards the end of the stability range for this
mode (γ = 0.31) the phase angle between the top/bottom
and center junctions becomes smaller, as can be seen from
Figure 6a, and the difference between cavities at the fun-
damental and second harmonic becomes less pronounced.

After having studied above the general behavior of the
stacked junction – cavity system for the relatively simple
case of three junctions with length 5, we consider in Fig-
ure 7 numerically much more demanding case of n = 7
and L = 10. Using the general formula for C+ [13] we
find C+ = 1.1075, and with L = 10 we find the inphase
cavity frequency to be Ω = 0.3479 and the cavity locking

voltage V = (2π/L)C+ = 0.6958. In order to keep the
coupling of the individual junction to the cavity the same
as above we have changed the c-value from c = 0.0001 to
c = 0.001 ∗ 7/3 = 0.000233. From [18] we have selected
parameters corresponding to almost coherent fluxon mo-
tion in a 7-stack. In that mode the inner 5 junctions has
in-phase fluxon motion while the top and bottom junc-
tions have switched to the McCumber curve. For these
two junctions there are traces with the same polarity and
in-phase with the inner fluxons. The time picture is shown
in Figure 7 that also demonstrates that we can excite a
cavity current the same way as in Figures 3, 4 for the
3 stack system.

4 Conclusion

The system consisting of a stack of Josephson junctions
coupled to a cavity has been investigated. We find that if
the resonator has a resonance frequency corresponding to
the in-phase intrinsic resonance of the stack [see Eq. (5)],
large amounts of power can be coupled to the cavity. We
have also found the coexistence of several dynamic states,
to which correspond different levels of emitted power. A
remarkable difference with the small Josephson junctions
arrays considered in reference [2] is that the resonant ve-
locity of modes pertaining to different number of locked
solutions are different [13], in contrast with the simpler
situation depicted in reference [2]. In the latter case it is
possible to independently change the number of active os-
cillators and their frequency, thus making a detailed study
of the sole effect of the number of active junctions simpler.

The system has a potential for practical applications in
microwave generation using high Tc BSCCO single crys-
tals at hundreds of Gigahertz.
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ductors’ are acknowledged.
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